Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius).

نویسندگان

  • Kåre-Olav Stensløkken
  • Stian Ellefsen
  • Jonathan A W Stecyk
  • Mai Britt Dahl
  • Göran E Nilsson
  • Jarle Vaage
چکیده

We investigated whether two kinases critical for survival during periods of energy deficiency in anoxia-intolerant mammalian species, AMP-activated kinase (AMPK), and protein kinase B (AKT), are equally important for hypoxic/anoxic survival in the extremely anoxia-tolerant crucian carp (Carassius carassius). We report that phosphorylation of AMPK and AKT in heart and brain showed small changes after 10 days of severe hypoxia (0.3 mg O2/l at 9 degrees C). In contrast, anoxia exposure (0.01 mg O2/l at 8 degrees C) substantially increased AMPK phosphorylation but decreased AKT phosphorylation in carp heart and brain, indicating activation of AMPK and deactivation of AKT. In agreement, blocking the activity of AMPK in anoxic fish in vivo with 20 mg/kg Compound C resulted in an elevated metabolic rate (as indicated by increased ethanol production) and tended to reduce energy charge. This is the first in vivo experiment with Compound C in a nonmammalian vertebrate, and it appears that AMPK plays a role in mediating anoxic metabolic depression in crucian carp. Real-time RT-PCR analysis of the investigated AMPK subunit revealed that the most likely composition of subunits in the carp heart is alpha2, beta1B, gamma2a, whereas a more even expression of subunits was found in the brain. In the heart, expression of the regulatory gamma2-subunit increased in the heart during anoxia. In the brain, expression of the alpha1-, alpha2-, and gamma1-subunits decreased with anoxia exposure, but expression of the gamma2-subunit remained constant. Combined, our findings suggest that AMPK and AKT may play important, but opposing roles for hypoxic/anoxic survival in the anoxia-tolerant crucian carp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maintained cardiac pumping in anoxic crucian carp.

Like most vertebrates, humans die within minutes when deprived of molecular oxygen (anoxia), in part because of cardiac failure. In contrast, some freshwater turtles can survive anoxia for months at low temperatures, but to do so, they drastically suppress cardiac activity and autonomic cardiovascular control. Although Carassius carassius, the crucian carp, shares this anoxia tolerance, we show...

متن کامل

Intrinsic contractile properties of the crucian carp (Carassius carassius) heart during anoxic and acidotic stress.

The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spont...

متن کامل

Utilization of the Ethanol Pathway in Carp following Exposure to Anoxia

1. Crucian carp (Carassius carassius L.) and Common carp (Cyprinus carpio L.) were subjected to 2h progressive hypoxia followed by up to 6 h anoxia in closed respirometers at 15 °C. 2. The concentrations of glycogen, glucose, phosphoryl creatine, alanine, succinate, lactate, ethanol and ammonia were determined in whole Crucian carp following exposure to both hypoxia and anoxia. 3. Ethanol and l...

متن کامل

Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills.

We show that crucian carp (Carassius carassius) living in normoxic (aerated) water have gills that lack protruding lamellae, the primary site of O(2) uptake in fish. Such an unusual trait leads to a very small respiratory surface area. Histological examination showed that the lamellae (secondary lamellae) of these fish were embedded in a cell mass (denoted embedded lamellae). When the fish were...

متن کامل

Effects of anoxia on energy metabolism in crucian carp brain slices studied with microcalorimetry

Crucian carp (Carassius carassius L.) is an exceptionally anoxia-tolerant vertebrate. To determine whether isolated crucian carp brain tissue survives anoxia and whether it displays anoxic metabolic depression, heat production (using microcalorimetry), lactate production, ethanol production and the maintenance of ATP, ADP and AMP levels and energy charge were measured in telencephalic brain sli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 6  شماره 

صفحات  -

تاریخ انتشار 2008